표 1. | Table 1. CNN 모델별 layer의 하이퍼 파라미터 | Hyper parameters in layer by CNN model.

Output size Basic CNN structure GoogLeNet ResNet DenseNet
50×50 Convolution, 64, 7×7+2(S)
25×25 Max pooling, 3×3+2(S)
Convolution, 128, 7×7+1(S) Convolution, 64, 1×1+1(S) [ 64 , 3 × 3 64 , 3 × 3 ] × 3 [ 16 , 3 × 3 4 , 3 × 3 ] × 6
Convolution, 192, 3×3+1(S) Convolution, 88, 1×1+1(S)
13×13 Max pooling, 3×3+2(S) Max pooling, 3×3+2(S) [ 128 , 3 × 3 128 , 3 × 3 ] × 4 Avg pooling, 2×2+2(S)
Convolution, 256, 7×7+1(S) [ 64 , 128 , 32 , 32 96 , 16 ] [ 16 , 3 × 3 4 , 3 × 3 ] × 12
[ 128 , 192 , 96 , 64 128 , 32 ] Convolution, 136, 1×1+1(S)
7×7 Max pooling, 3×3+2(S) Max pooling, 3×3+2(S) [ 256 , 3 × 3 256 , 3 × 3 ] × 6 Avg pooling, 2×2+2(S)
[ 192 , 208 , 48 , 64 96 , 16 ]
[ 160 , 224 , 64 , 64 112 , 24 ] [ 16 , 3 × 3 4 , 3 × 3 ] × 24
Convolution, 512, 7×7+1(S) [ 128 , 256 , 64 , 64 128 , 24 ]
[ 112 , 288 , 64 , 64 144 , 32 ] Convolution, 232, 1×1+1(S)
[ 256 , 320 , 128 , 128 160 , 32 ]
4×4 Max pooling, 3×3+2(S) Max pooling, 3×3+2(S) [ 512 , 3 × 3 512 , 3 × 3 ] × 3 Avg pooling, 2×2+2(S)
[ 256 , 320 , 128 , 128 160 , 32 ] [ 16 , 3 × 3 4 , 3 × 3 ] × 16
[ 384 , 384 , 128 , 128 , 192 , 48 ]
1×1 Global Avg pooling, fully connected